The extensive length-force relationship of porcine airway smooth muscle.
نویسندگان
چکیده
The full functional length range of trachealis muscle was measured to identify a precise reference length and to assess the length changes that the myofilament lattice can accommodate. The initial reference length (L(10%)) was that where rest tension equaled 10% of total force (passive tension plus active force). Total force at this length served as a force reference (F(ref) = 219 +/- 12 kPa, N = 7). Muscles initially adapted at L(10%) for 30-60 min had no rest tension when shortened to <0.9 L(10%). Passive tension rose steeply and linearly with slope 11.2 F(ref)/L(10%) at lengths >1.04 L(10%). Rest tension at 1.1 L(10%) declined by <10% over 1 h. The steep slope and stability of rest tension at long lengths suggest that a parameter of the slope could serve as a precise, reproducible reference length. Active force was nearly constant at lengths 0.33-1.0 L(10%) and declined steeply at lengths between 0.1 and 0.2 L(10%), extrapolating to zero at 0.076 L(10%). Muscles visibly reextended during relaxation at lengths <0.25 L(10%). At long lengths, force extrapolated to zero at 1.175 L(10%). The >15-fold length range (0.076-1.175 L(10%)) for force generation and nearly constant force over a greater than threefold length range is likely produced by several structural accommodations, including filament sliding, an increased number of sliding filaments in series, and increased length of passive structures in series with the sliding filaments. Visible reextension during relaxation suggests that the lattice does not undergo plastic adaptations at lengths <25% L(10%) and that lattice plasticity is limited to a three- to fourfold length range.
منابع مشابه
Myosin thick filament lability induced by mechanical strain in airway smooth muscle.
Airway smooth muscle adapts to different lengths with functional changes that suggest plastic alterations in the filament lattice. To look for structural changes that might be associated with this plasticity, we studied the relationship between isometric force generation and myosin thick filament density in cell cross sections, measured by electron microscope, after length oscillations applied ...
متن کاملLogarithmic superposition of force response with rapid length changes in relaxed porcine airway smooth muscle.
We present a systematic quantitative analysis of power-law force relaxation and investigate logarithmic superposition of force response in relaxed porcine airway smooth muscle (ASM) strips in vitro. The term logarithmic superposition describes linear superposition on a logarithmic scale, which is equivalent to multiplication on a linear scale. Additionally, we examine whether the dynamic respon...
متن کاملOn the terminology for describing the length-force relationship and its changes in airway smooth muscle.
The observation that the length-force relationship in airway smooth muscle can be shifted along the length axis by accommodating the muscle at different lengths has stimulated great interest. In light of the recent understanding of the dynamic nature of length-force relationship, many of our concepts regarding smooth muscle mechanical properties, including the notion that the muscle possesses a...
متن کاملModeling the oscillation dynamics of activated airway smooth muscle strips.
When strips of activated airway smooth muscle are stretched cyclically, they exhibit force-length loops that vary substantially in both position and shape with the amplitude and frequency of the stretch. This behavior has recently been ascribed to a dynamic interaction between the imposed stretch and the number of actin-myosin interactions in the muscle. However, it is well known that the passi...
متن کاملPlasticity in Skeletal, Cardiac, and Smooth Muscle Selected Contribution: Effect of chronic passive length change on airway smooth muscle length-tension relationship
Wang, Lu, Peter D. Paré, and Chun Y. Seow. Selected Contribution: Effect of chronic passive length change on airway smooth muscle length-tension relationship. J Appl Physiol 90: 734–740, 2001.—The ability of rabbit trachealis to undergo plastic adaptation to chronic shortening or lengthening was assessed by setting the muscle preparations at three lengths for 24 h in relaxed state: a reference ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 102 5 شماره
صفحات -
تاریخ انتشار 2007